CALCULATIONS POLICY

Harbinger Primary School

Approved by Governing Body: 2022
Review Date: December 2023

> Our aim is for each child to have an efficient strategy for each operation so that they are able to calculate independently. This will be helped by all staff having a shared understanding and common approach when teaching the methods.

At Harbinger, we use the 'White Rose Hub' format as a basis for our planning. This document should be used to support children to develop a deep understanding of numbers and calculation. This policy has been designed to teach the children through the use of concrete, pictorial and abstract representations.

The aim is that when children leave Harbinger they:

- Have a secure knowledge of number facts and a good understanding of the four calculation operations (addition, subtraction, multiplication and division)
- Make use of jottings, diagrams and informal notes to help record steps and part answers when using mental methods that generate more information than can be kept in their heads
- Have an efficient, reliable, written method of calculation for each operation that they are able to apply with confidence when they are unable to perform a calculation mentally

The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school. Please note that early learning in number and calculation in Reception follows the 'Development Matters'EYFS document, and this calculation policy is designed to build on progressively from the content and methods established in the Early Years Foundation Stage.

Age stage expectations

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014, however it is vital that pupils are taught according to the stage that they are currently working at, being moved onto the next level as soon as they are ready, or working at a lower stage until they are secure enough to move on.

Providing a context for calculation:

It is important that any type of calculation is given a real life context or problem solving approach to help build children"s understanding of the purpose of calculation, and to help them recognise when to use certain operations and methods when faced with problems. This must be a priority within calculation lessons.

Choosing a calculation method:

Children need to be taught and encouraged to use the following processes in deciding what approach they will take to a calculation, to ensure they select the most appropriate method for the numbers involved:

To work out a tricky calculation:

Approximate,

Calculate,

Check it mate!

Year 1 Add with numbers up to 20

Use numbered number lines to add, by counting on in ones. Encourage children to start with the larger number and count on.

Children should:

- Have access to a wide range of counting equipment, everyday objects, number tracks and number lines, and be shown numbers in different contexts.
- Read and write the addition (+) and equals (=) signs within number sentences.
- Interpret addition number sentences and solve missing box problems, using concrete objects and number line addition to solve them: $8+3=\ldots$

$$
15+4=\ldots \quad 5+3+1=\ldots \quad \ldots+\ldots=6
$$

This builds on from prior learning of adding by combining two sets of objects into one group (5 cubes and 3 cubes) in Early Years.

Bead strings or bead bars can be used to illustrate addition including bridging through ten by counting on 2 then counting on 3 .
$8+5$

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line

Key skills for addition at Y1:

- Read and write numbers to 100 in numerals, incl. 1-20 in words
- Recall bonds to 10 and 20, and addition facts within 20
- Count to and across 100
- Count in multiples of 12,5 and 10
- Solve simple 1-step problems involving addition, using objects, number lines and pictorial representations.

```
Hundred square should be used to support children when adding tens to a number and jumps of more than one.
```

Add pairs of 2-digit numbers, moving to the partitioned column method when secure adding tens and ones:
$23+34:$

STEP 1:Only provide examples that do NOT cross the tens boundary until they are secure with the method itself.

STEP 2: Once children can add a multiple of ten to a 2-digit number mentally (e.g. 80+11), they are ready for adding pairs of 2-digit numbers that DO cross the tens boundary (e.g. $58+43$).

STEP 3: Children who are confident and accurate with this stage should move onto the expanded addition methods with 2 and 3-digit numbers (see Y 3).

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, addition, column, tens boundary

Key skills for addition at Y 2 :

- Add a 2-digit number and ones (e.g. $27+6$)
- Add a 2 -digit number and tens (e.g. $23+40$)
- Add pairs of 2 -digit numbers (e.g. $35+47$)
- Add three single-digit numbers (e.g. $5+9+7$)
- Show that adding can be done in any order (the commutative law).
- Recall bonds to 20 and bonds of tens to $100(30+70$ etc.)
- Count in steps of 2,3 and 5 and count in tens from any number.
- Understand the place value of 2 -digit numbers (tens and ones)
- Compare and order numbers to 100 using < > and = signs.
- Read and write numbers to at least 100 in numerals and words.
- Solve problems with addition, using concrete objects, pictorial representations, involving numbers, quantities and measures, and applying mental and written methods.

Year 3 Add numbers with up to 3-digits

Introduce the expanded column addition method:

Move to the compact column addition method, with 'carrying":

Children who are very secure and confident with 3 -digit expanded column addition should be moved onto the compact column addition method, being introduced to 'carrying' for the first time. Compare the expanded method to the compact column method to develop an understanding of the process and the reduced number of steps involved.

1

Remind pupils the actual value is 'thirty add seventy', but we say 'three add seven" because it is already in the tens column.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, 'carry', expanded, compact

Key skills for addition at Y 3 :

- Read and write numbers to 1000 in numerals and words.
- Add 2-digit numbers mentally, incl. those exceeding 100.
- Add a three-digit number and ones mentally $(175+8)$
- Add a three-digit number and tens mentally $(249+50)$
- Add a three-digit number and hundreds mentally $(381+400)$
- Estimate answers to calculations, using inverse to check answers.
- Solve problems, including missing number problems, using number facts, place value, and more complex addition.
- Recognise place value of each digit in 3-digit numbers (hundreds, tens, ones.)
- Continue to practise a wide range of mental addition strategies, ie. number bonds, adding the nearest multiple of 10,100,1000 and adjusting, using near doubles, partitioning and recombining.

Year 4 Add numbers with up to 4 digits

Move from expanded addition to the compact column method, adding ones first, and 'carrying' numbers underneath the calculation. Also include money and measures contexts.
e.g. $3517+396=3913$

Introduce the compact column addition method by asking children to add the two given numbers together using the method that they are familiar with (expanded column addition-see Y3). Teacher models the compact method with carrying, asking children to discuss similarities and differences and establish how it is carried out.

Reinforce correct place value by reminding them the actual value is 5 hundreds add 3 hundreds, not 5 add 3, for example.

CUse and apply this method to money and measurement values.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, vertical, 'carry', expanded, compact, thousands, hundreds, digits, inverse

Key skills for addition at Y 4 :

- Select most appropriate method: mental, jottings or written and explain why.
- Recognise the place value of each digit in a four-digit number.
- Round any number to the nearest 10,100 or 1000.
- Estimate and use inverse operations to check answers.
- Solve 2-step problems in context, deciding which operations and methods to use and why.
- Find 1000 more or less than a given number.
- Continue to practise a wide range of mental addition strategies, ie. number bonds, add the nearest multiple of $10,100,1000$ and adjust, use near doubles, partitioning and recombining.
- Add numbers with up to 4 digits using the formal written method of column addition
- Solve 2-step problems in contexts, deciding which operations and methods to use and why.
- Estimate and use inverse operations to check answers to a calculation.

Year 5 Add numbers with more than 4 digits

including money, measures and decimals with different numbers of decimal places.

The decimal point should be aligned in the same way as the other place value columns, and must remain in the same column in the answer row.

Numbers should exceed 4 digits.

Pupils should be able to add more than two values, carefully aligning place value columns.

Children should:

Understand the place value of tenths and hundredths and use this to align numbers with different numbers of decimal places.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, 'carry', expanded, compact, vertical, thousands, hundreds, digits, inverse \& decimal places, decimal point, tenths, hundredths, thousandths

Key skills for addition at Y5:

- Add numbers mentally with increasingly large numbers, using and practising a range of mental strategies ie. add the nearest multiple of $10,100,1000$ and adjust; use near doubles, inverse, partitioning and re-combining; using number bonds.
- Use rounding to check answers and accuracy.
- Solve multi-step problems in contexts, deciding which operations and methods to use and why.
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Round any number up to $1,000,000$ to the nearest $10,100,1000,10,000$ and 100,000 .
- Add numbers with more than 4 digits using formal written method of columnar addition.

Key vocabulary: add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on, number line, sum, tens, ones, partition, plus, addition, column, tens boundary, hundreds boundary, increase, 'carry', expanded, compact, vertical, thousands, hundreds, digits, inverse, decimal places, decimal point, tenths, hundredths, thousandths

Key skills for addition at Y6:

- Perform mental calculations, including with mixed operations and large numbers, using and practising a range of mental strategies.
- Solve multi-step problems in context, deciding which operations and methods to use and why.
- Use estimation to check answers to calculations and determine, in the context of a problem, levels of accuracy.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit.
- Round any whole number to a required degree of accuracy.
- Pupils understand how to add mentally with larger numbers and calculations of increasing complexity.

Year 1 Subtract from numbers up to 20

> Children consolidate understanding of subtraction practically, showing subtraction on bead strings, using cubes etc. and in familiar contexts, and are introduced to more formal recording using number lines as below:

Subtract by taking away

line to take away, with
numbers up to 20: $7-4=3$
Model subtraction using hundred squares and numbered number Find the 'difference between'
This will be introduced practically with the language 'find the difference between' and 'how many more?" in a range of familiar contexts.
'Seven is 3 more than four"

4

'I am 2 years older than my sister"
E. 9 How many more sweets does Sally have?
Mental subtraction
Children should start recalling subtraction facts up to and within 10 and 20, and should be able to subtract zero.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?

Key skills for subtraction at Y 1 :

- Given a number, say one more or one less.
- Count to and over 100, forward and back, from any number.
- Represent and use subtraction facts to 20 and within 20.
- Subtract with one-digit and two-digit numbers to 20 , including zero.
- Solve one-step problems that involve addition and subtraction, using concrete objects (ie bead string, objects, cubes) and pictures, and missing number problems.
- Read and write numbers from 0 to 20 in numerals and words.

Year 2 Subtract with 2-digit numbers

Subtract on a number line by counting back, aiming to develop mental subtraction skills.

This strategy will be used for:

- 2-digit numbers subtract ones (by taking away / counting back) e.g. 36-7
- 2-digit numbers subtract tens (by taking away / counting back) e.g. 48-3
- Subtracting pairs of 2-digit numbers (see below:)

Subtracting pairs of 2-digit numbers on a number line:

Mental strategy - subtract numbers close together by counting on:
$42-38=4$

Children are taught that when numbers are close together, it is more efficient to count on the difference. They need to be clear about the relationship between addition and subtraction.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, ones
Key skills for subtraction at y 2 :

- Recognise the place value of each digit in a two-digit number.
- Recall and use subtraction facts to 20 fluently, and derive and use related facts up to 100.
- Subtract using concrete objects, pictorial representations, 100 squares and mentally, including: a twodigit number and ones, a two-digit number and tens, and two two-digit numbers.
- Show that subtraction of one number from another cannot be done in any order.
- Recognise and use inverse relationship between addition and subtraction, using this to check calculations and missing number problems.
- Solve simple addition and subtraction problems including measures, using concrete objects, pictorial representation, and also applying their increasing knowledge of mental and written methods.
- Read and write numbers to at least 100 in numerals and in words.

Year 3 Subtracting with 2 and 3 -digit numbers.

Introduce partitioned column subtraction method.

When learning to 'exchange", explore 'partitioning in different ways" so that pupils understand that when you exchange, the VALUE is the same ie $72=70+2=60+12=50+22$ etc. Emphasise that the value hasn" \dagger changed, we have just partitioned it in a different way

Step 2: introduce
'exchanging' through
Practical subtraction.
72-47

$$
\frac{-40+7}{20+5=25}
$$

Before subtracting ' 7 ' from the 72 blocks, they will need to exchange a row of ten ones

STEP 3: Once pupils are secure with the understanding of "exchanging", they can use the partitioned column method to subtract any 2 and 3 -digit numbers.

Counting on as a mental strategy for subtraction:
Continue to reinforce counting on as a strategy for close-together numbers (e.g. 121-118), and also for numbers that are "nearly" multiples of $10,100,1000$ or $£ s$, which make it easier to count on (e.g. 102-89, 131-79, or calculating change from $£ 1$ etc.).

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, ones exchange, decrease, hundreds, value, digit

Key skills for subtraction at Y3:

- Subtract mentally a: 3-digit number and ones, 3-digit number and tens, 3-digit number and hundreds .
- Estimate answers and use inverse operations to check.
- Solve problems, including missing number problems.
- Find 10 or 100 more or less than a given number.
- Recognise the place value of each digit in a 3-digit number.
- Counting up differences as a mental strategy when numbers are close together or near multiples of 10 (see examples above)
- Read and write numbers up to 1000 in numerals and words.
- Practise mental subtraction strategies, such as subtracting near multiples of 10 and adjusting (e.g. subtracting 19 or 21), and select most appropriate methods to subtract, explaining why.

Year 4 Subtract with up to 4-digit numbers

Partitioned column subtraction with 'exchanging' (decomposition):

To introduce the compact method, ask children to perform a subtraction calculation with the familiar partitioned column subtraction then display the compact version for the calculation they have done. Ask pupils to consider how it relates to the method they know, what is similar and what is different, to develop an understanding of it (shown on video).

Always encourage children to consider the best method for the numbers involved-mental, counting on, counting back or written method

Mental strategies

A variety of mental strategies must be taught and practised, including counting on to find the difference where numbers are closer together, or where it is easier to count on.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance be-
tween, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, ones, exchange, decrease, hundreds, value, digit, inverse

Key skills for subtraction at y 4 :

- Subtract by counting on where numbers are close together or they are near to multiples of 10,100 etc.
- Children select the most appropriate and efficient methods for given subtraction calculations.
- Estimate and use inverse operations to check answers.
- Solve addition and subtraction 2-step problems, choosing which operations and methods to use and why.
- Solve simple measure and money problems involving fractions and decimals to two decimal places.
- Find 1000 more or less than a given number.
- Count backwards through zero, including negative numbers.
- Recognise place value of each digit in a 4-digit number Round any number to the nearest 10,100 or 1000
- Solve number and practical problems that involve the above, with increasingly large positive numbers.

Year 5 subtract with at least 4-digit numbers

including money, measures, decimals.

Compact column subtraction (with 'exchanging').

Subtracting with larger integers.

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, distance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_? difference, count on, strategy, partition, tens, ones
exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal
Key skills for subtraction at V_{5} :

- Subtract numbers mentally with increasingly large numbers.
- Use rounding and estimation to check answers to calculations and determine, in a range of contexts, levels of accuracy.
- Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
- Read, write, order and compare numbers to at least 1 million and determine the value of each digit.
- Count forwards or backwards in steps of powers of 10 for any given number up to 1 million.
- Interpret negative numbers in context, counting forwards and backwards with positive and negative integers through zero.
- Round any number up to 1 million to the nearest $10,100,1000,10,000$ and 100,000 .

Key vocabulary: equal to, take, take away, less, minus, subtract, leaves, dis- tance between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?
Difference, count on, strategy, partition, tens, ones exchange, decrease, hundreds, value, digit, inverse, tenths, hundredths, decimal point, decimal

Key skills for subtraction at Y6:

- Solve addition and subtraction multi-step problems in context, deciding which operations and methods to use and why.
- Read, write, order and compare numbers up to 10 million and determine the value of each digit
- Round any whole number to a required degree of accuracy
- Use negative numbers in context, and calculate intervals across zero.
- Children need to utilise and consider a range of mental subtraction strategies, jottings and written methods before choosing how to calculate.

Year 2 Multiply using arrays and repeated addition

(using at least 2s, 5s and 10s)

Use repeated addition on a number line:

- Starting from zero, make equal jumps up on a number line to work out multiplication facts and write multiplication statements using x and $=$ signs.

$4 \times 5=20$

Use arrays:

$$
3 \times 5=15
$$

Use arrays to help teach children to understand the commutative law of multiplication, and give examples such as $3 \times$ \qquad $=6$.

$$
5 \times 3=5+5+5
$$

Use practical apparatus:

Use mental recall:

- Children should begin to recall multiplication facts for 2,5 and 10 times tables through practice in counting and understanding of the operation.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times...
Key skills for multiplication at Y2:

- Count in steps of 2,3 and 5 from zero, and in 10 s from any number.
- Recall and use multiplication facts from the 2,5 and 10 multiplication tables, including recognising odds and evens.
- Write and calculate number statements using the \times and $=$ signs.
- Show that multiplication can be done in any order (commutative).
- Solve a range of problems involving multiplication, using concrete objects, arrays, repeated addition, mental methods, and multiplication facts.
- \quad Pupils use a variety of language to discuss and describe multiplication.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, times, _times as big as, once, twice, three times..., partition, grid method, multiple, product, tens, ones, value
Key skills for multiplication:

- Recall and use multiplication facts for the 2, 3, 4, 5, 8 and 10 multiplication tables, and multiply multiples of 10 .
- Write and calculate number statements using the multiplication tables they know, including 2-digit x single digit, drawing upon mental methods, and progressing to reliable written methods.
- Solve multiplication problems, including missing number problems.
- Develop mental strategies using commutativity (e.g. $4 \times 12 \times 5=4 \times 5 \times 12=20 \times 12=240$)
- Solve simple problems in contexts, deciding which operations and methods to use.
- Develop efficient mental methods to solve a range of problems e.g using commutativity ($4 \times 12 \times 5=$ $4 \times 5 \times 12=20 \times 12=240$) and for missing number problems $\times 5=20, \quad 3 \times=18, \quad x=32$

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, groups of, sets of, lots of, equal groups, times, multiply, times as big as, once, twice, three times... partition, grid method, total, multiple, product, sets of, inverse
Key skills for multiplication at Y4:

- Count in multiples of $6,7,9,25$ and 1000
- Recall multiplication facts for all multiplication tables up to 12×12.
- Recognise place value of digits in up to 4 -digit numbers
- Use place value, known facts and derived facts to multiply mentally, e.g. multiply by $1,10,100$, by 0 , or to multiply 3 numbers.
- Use commutativity and other strategies mentally $3 \times 6=6 \times 3,2 \times 6 \times 5=10 \times 6,39 \times 7=30 \times 7+9 \times 7$.
- Solve problems with increasingly complex multiplication in a range of contexts.
- Count in multiples of $6,7,9,25$ and 1000
- Recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones)

Key vocabulary groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, column, row, commutative, sets of, equal groups, _times as big as, once, twice, three times..., partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short/long multiplication, 'carry"
Key skills for multiplication at Y 5 :

- Identify multiples and factors, using knowledge of multiplication tables to 12×12.
- Solve problems where larger numbers are decomposed into their factors
- Multiply and divide integers and decimals by 10,100 and 1000
- Recognise and use square and cube numbers and their notation
- Solve problems involving combinations of operations, choosing and using calculations and methods appropriately.

Year 6 Short and long multiplication as in Y5, and multiply decimals with up to 2d.p by a single digit.

Children will be able to:

- Use rounding and place value to make approximations before calculating and use these to check answers against.
- Use short multiplication (see Y 5) to multiply numbers with more than 4-digits by a single digit; to multiply money and measures, and to multiply decimals with up to 2d.p. by a single digit.
- Use long multiplication (see Y_{5}) to multiply numbers with at least 4 digits by a 2-digit number.

Key vocabulary: groups of, lots of, times, array, altogether, multiply, count, multiplied by, repeated addition, array, column, row, commutative, sets of, equal groups, times as big as, once, twice, three times... partition, grid method, total, multiple, product, inverse, square, factor, integer, decimal, short / long multiplication, 'carry", tenths, hundredths, decimal

Key skills for multiplication at Y6:

- Recall multiplication facts for all times tables up to 12×12 (as Y 4 and Y 5).
- Multiply multi-digit numbers, up to 4-digit $\times 2$-digit using long multiplication.
- Perform mental calculations with mixed operations and large numbers.
- Solve multi-step problems in a range of contexts, choosing appropriate combinations of operations and methods.
- Estimate answers using round and approximation and determine levels of accuracy.
- Round any integer to a required degree of accuracy.

Key Vocabulary: share, share equally, one each, two each..., group, groups of, lots of, array
Key number skills needed for division at Y 1 :

- Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations arrays with the support of the teacher
- Through grouping and sharing small quantities, pupils begin to understand, division, and finding simple fractions of objects, numbers and quantities.
- They make connections between arrays, number patterns, and counting in twos, fives and tens.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over
Key number skills needed for division at Y 2 :

- Count in steps of 2,3 , and 5 from 0
- Recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
- Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the x, \div and $=$ signs.
- Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.
- Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, 'carry", remainder, multiple

Key number skills needed for division at Y3:

- Recall and use multiplication and division facts for the 2, 3, 4, 5, 8 and 10 multiplication tables (through doubling, connect the 2, 4 and 8 s).
- Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.
- Solve problems, in contexts, and including missing number problems, involving multiplication and division.
- Pupils develop efficient mental methods, for example, using multiplication and division facts (e.g. using $3 \times 2=$
- $6,6 \div 3=2$ and $2=6 \div 3$) to derive related facts ($30 \times 2=60$, so $60 \div 3=20$ and $20=60 \div 3$).
- Pupils develop reliable written methods for division, starting with calculations of 2-digit numbers by 1-digit numbers and progressing to the formal written method of short division.

Real life contexts need to be used routinely to help pupils gain a full understanding.

Year 4 Divide up to 3-digit numbers by a single digit

 (with and without remainders)Continue to develop short division:

Short division should only be taught once children have secured the skill of calculating 'remainders".

STEP 1: Pupils must be secure with the process of short division for dividing 2-digit numbers by a single digit (those that do not result in a final remainder -see steps in Y 3), but must understand how to calculate remainders, using this to 'carry" remainders within the calculation process (see example).

STEP 2: Pupils move onto dividing numbers with up to 3-digits by a single digit, however problems and calculations provided should not result in a final answer with remainder at this stage. Children who exceed this expectation may progress to Y 5 level.

When the answer for the first column is zero
($1 \div 5$, as in example), children could initially write a zero above to acknowledge its place, and must always 'carry" the number (1) over to the next digit as a remainder.
 and measure contexts when confident

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, 'carry", remainder, multiple, divisible by, factor
Key number skills needed for division at Y4:

- Recall multiplication and division facts for all numbers up to 12×12.
- Use place value, known and derived facts to multiply and divide mentally, including: multiplying and dividing by 10 and 100 and 1 .
- Pupils practise to become fluent in the formal written method of short division with exact answers when dividing by a one-digit number
- Pupils practise mental methods and extend this to three-digit numbers to derive facts, for example $200 \times$ $3=600$ so $600 \div 3=200$
- Pupils solve two-step problems in contexts, choosing the appropriate operation, working with increasingly harder numbers. This should include correspondence questions such as three cakes shared equally between 10 children.

Year 5 Divide up to 4 digits by a single digit, including

 those with remainders.
Short division, including remainder answers:

The answer to $5309 \div 8$ could be expressed as 663 and five eighths, 663 r 5 , as a decimal, or rounded as appropriate to the problem involved.

Short division with remainders: Now that pupils are introduced to examples that give rise to remainder answers, division needs to have a real life problem solving context, where pupils consider the meaning of the remainder and how to express it, ie. as a fraction, a decimal, or as a rounded number or value, depending upon the context of the problem.

Include money and measure contexts.

If children are confident and accurate:

- Introduce long division for pupils who are ready to divide any number by a 2 -digit number (e.g. $2678 \div 19$). This is a Year 6 expectation

Key Vocabulary: share, share equally, one each, two each..., group, equal groups of, lots of, array, divide, divided by, divided into, division, grouping, number line, left, left over, inverse, short division, 'carry", remainder, multiple, divisible by, factor, inverse, quotient, prime number, prime factors, composite number (non-prime)

Key number skills needed for division at Y 5 :

- Recall multiplication and division facts for all numbers up to 12×12 (as in y 4).
- Multiply and divide numbers mentally, drawing upon known facts.
- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two number.
- Solve problems involving multiplication and division where larger numbers are decomposed into their factors.
- Multiply and divide whole numbers and those involving decimals by 10,100 and 1000.
- Use the vocabulary of prime numbers, prime factors and composite (non-prime) numbers.
- Work out whether a number up to 100 is prime, and recall prime numbers to 19.
- Divide numbers up to 4 digits by a one-digit number using the formal written method of short division and interpret remainders appropriately for the context
- Use multiplication and division as inverses.
- Interpret non-integer answers to division by expressing results in different ways according to the context, including with remainders, as fractions, as decimals or by rounding (e.g. $98 \div 4=24 \mathrm{r} 2=241 / 2=24.5 \approx 25$).
- Solve problems involving combinations of all four operations, including understanding of the equals sign, and including division for scaling by different fractions and problems involving simple rates.

Year 6 Divide at least 4 digits by both single-digit and

2-digit numbers (including decimal numbers and quantities)

Short division, for dividing by a single digit: e.g. $6497 \div 8$

Short division with remainders: Pupils should continue to use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders, or rounded numbers. Real life problem solving contexts need to be the starting point, where pupils have to consider the most appropriate way to express the remainder.

Calculating a decimal remainder: In this example, rather than expressing the remainder as $\underline{r} 1$, a decimal point is added after the ones because there is still a remainder, and the one remainder is carried onto zeros after the decimal point (to show there was no decimal value in the original number). Keep dividing to an appropriate degree of accuracy for the problem being solved.

Introduce long division by chunking for dividing by 2 digits.

Key Vocabulary: As previously, \& common factor
Key number skills needed for division at Y6:

- Recall and use multiplication and division facts for all numbers to 12×12 for more complex calculations
- Divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context. Use short division where appropriate.
- Perform mental calculations, including with mixed operations and large numbers.
- Identify common factors, common multiples and prime numbers.
- Solve problems involving all 4 operations.
- Use estimation to check answers to calculations and determine accuracy, in the context of a problem.
- Use written division methods in cases where the answer has up to two decimal places.
- Solve problems which require answers to be rounded to specified degrees of accuracy.

